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Stationary variational functionals for the Laplace transform of the Liouville 
distribution are constructed. The value of the functional is the autocorrelation 
function that one wishes to compute. It is shown that the functionals may be 
transformed to a renormalized form. Trial functions not involving the 
potential explicitly give rise to time-dependent autocorrelation functions 
determined only by equilibrium spatial correlation functions. Another class 
of functionals is constructed by independently varying the parity symmetric 
and antisymmetric parts of the distribution function. Trial functions need 
only be assumed for one of these---the optimum value of the other one is 
given exactly. This procedure is used to improve the simplest known theories 
for velocity and density autocorrelation functions. 

KEY WORDS: Variational principles; Liouville equation; time correlation 
functions. 

1. I N T R O D U C T I O N  

I n  an  ea r l i e r  p a p e r  m (hereaf te r  d e n o t e d  as I) we s tud ied  t i m e - d e p e n d e n t  

so lu t ions  o f  t he  L iouv i l l e  e q u a t i o n  in  t he  l inear  r e sponse  d o m a i n .  ~ This  is 

the  d o m a i n  n e a r  the  exac t  e q u i l i b r i u m  d i s t r i bu t ion  4 ,  where  the  a m p l i t u d e  
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f N  ~- ~b(l -~- FN), 6~FN - - ~ -  + LFN = O, 

and work with the Laplace transform 

of a disturbance is small. However, one is interested in a theory that deals 
with arbitrarily rapid spatial and temporal processes. 

The approach in I was based on assumed forms for the N-body sym- 
metric distribution functionfs(t) .  In the lowest approximationfN is assumed 
to be of the form q)[1 -t- ~ff=z ~b(p~qj)]. The deviation from equilibrium is 
assumed to be one-body additive for all time. The assumed form for fN 
determines the reduced singlet, doublet, etc., distributions. It yields a trunca- 
tion scheme for the time-dependent BBGKY equations. The result of the 
first approximation is a modified Vlasov equation with the bare inter- 
particle potential replaced by the Ornstein-Zernike direct correlation 
function. The singlet distribution function has the correct short-time behavior. 
For example, one satisfies the sum rule f co2S(k, w)do) for the Fourier- 
Laplace transform of the density autocorrelation function. In the second 
approximation fN is permitted to contain two-body additive terms for all t. 
This restricted form determines the time-dependent triplet distribution 
function in terms of the singlet and doublet. Again one has a truncation of 
the hierarchy--the approximate theory consists of coupled equations for the 
singlet and doublet distributions. 

It was shown in I that the scheme is renormalized in the following sense. 
By using the exact equilibrium hierarchy, the time-dependent distributions 
can be shown to satisfy equations where the bare potential is absent. The 
equations contain only equilibrium spatial correlation functions. For 
example, in the first approximation it is the direct correlation function that 
replaces the bare potentia ! . 

In the present paper we continue the strategy of making direct assump- 
tions on the approximate functional form offN(t). We take advantage of the 
linearity of the Liouville equation 

N 
~=~ m Oq~ ~q~ ~p~ (1) 

(~ + L)FN(~) = Fo (2) 

Here 
m f e+im F(a) = f e-"tFN(t ) dt, FN(t) = (1/2~ri) F(a) e ~ (3) 

Jo e-io~ 

and F0 is the initial value FN(t = 0). Our starting point is a stationary 
variational principle for the Liouville equation. 

We define the momentum-reversed distribution F_(pl "'" qN/a) as 

F_(.p, "" qN/a) = F(p~ "" qN/a) (4) 
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(an underscore beneath a number denotes the negative of the number). It 
obeys the equation 

( a  - -  L ) F _ ( a )  = F o_ (5)  

We construct the functional 

J(o) = f *F_[(~ + L)F  -- F0] d r  -- f ~ F F  o_ dF (6) 

and examine its variation with respect to F. We make use of the facts that 
L~O --~ 0, q5 is invariant under momentum reversal, and L changes sign under 
momentum reversal. It is then clear that the condition of stationarity of J 
yields the Liouville equations for F and F_ .  

When F satisfies the Liouville equation the stationary value of J is 

[J(a)] : - -  f ~bFNFo_ dI" (7) 

(for ease of notation we will drop the bar indicating the Laplace transform). 
For example, if F0 = Z~=I 8(q~ -- x), we haveF0_ = Fo and [J] is the negative 
of the Laplace transform of the density autocorrelation function. The varia- 
tional principle permits an accurate computation of the latter quantity in the 
following sense. If F is near the correct solution of the Liouville equation and 
is in error of order E, the density autocorrelation function is only in error of 
order Cz. 

The approach to the solutions of the Liouville equation using stationary 
variational principles enables us to direct the approximations toward the 
goal of accurately computing quantities of particular interest. We also gain a 
great deal of freedom in the approximations that can be made. For example, 
one can work with nonorthogonal functions in a controlled way. One can 
insist on approximations that are compatible with the microscopic conserva- 
tion laws by employing Lagrange multipliers to handle constraints. In 
addition, general symmetry and invariance properties can be exploited 
maximally. 

An example of the utility of the variational approach is found in 
Section 2. There we use elementary integration by parts to transform the 
functional to a manifestly renormalized form. This replaces the somewhat 
cumbersome use of the exact equilibrium hierarchy in I. Furthermore, we 
obtain renormalized results for approximation schemes that lie outside the 
framework of I. In Section 2 we derive a further normalization-independent 
form of the stationary variational principle whose utility was demonstrated 
by Schwinger in other contexts. In Section 3 we rederive the equations of I 
and exhibit some of the additional flexibility of the variational approach. 

In the present classical, nonrelativistic theory all equilibrium correlation 
functions are well defined, including averages of functionals of the potential 
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energy. One is therefore not compelled to use the renormalized form of the 
theory. In Section 4 we note that the distribution [:(Pz - -  - -  qu /a )  is the sum 
of a part F A that reverses sign under the operation p~ --~ --p~ and of  a part F s 

that is unchanged. The functional J may be varied independently with respect 
to the two parts. Given an approximate F s, the optimum F A may be computed 
exactly. When this is inserted into J we obtain a new functional in which 
only F s is to be varied. The new operator is L ~, which is self-adjoint and 
invariant to momentum reversal. 

In Section 5 we examine the problem of  the evolution of  a symmetric 
initial distribution that is spatially homogeneous and of the form 

N 

F ( t  -~ O) = Z fo(P,). 
i = 1  

The one-body additive assumption F(a)  N = ~ i = z f ( P i / a )  yields no change in 
the initial distribution. The less restrictive assumption that only the sym- 
metric part is one-body additive leads to an exactly soluble result where at 
least the short-time behavior is reasonable. 

In Section 6 we examine the problem of determining the density auto- 
correlation function. The one-body additivity assumption F = Z i=l  ~b(PiqJa) 

leads to the modified Vlasov equation. However, we may make this assump- 
tion only for the symmetric part and use the optimum associated anti- 
symmetric part. The theory is still exactly soluble. Along with the equilibrium 
pair correlation function, there now appears the new quantity ( ~ = a  V~V) �9 

While some of the results of the applications illustrated in this paper are 
of interest in themselves, the assumptions on the distribution functions are 
still primitive. They do serve to illustrate the techniques we will use in using 
more realistic approximations. 

2. T R A N S F O R M A T I O N S  OF T H E  F U N C T I O N A L  

We have the functional (6) where F and F_ are real when cr is real. We 
will first transform the functional so that the quantity we want to compute, 
namely [J], is "renormalized," i.e., is expressible solely in terms of  static 
correlation functions. The bare potential that is contained in L does not 
appear. That this is possible was shown in paper I, but in a somewhat 
cumbersome way. The result is almost trivial when the problem is approached 
via the variational principle. 

Consider the expression 

F~ P,~ 0 aV 
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It may be rewritten as 

& = - - K T  z F_ ep~ ~p. ~q~ ep~ 
cr 

where K is Boltzmann's constant. Integrating by parts; we find 

--JL = KT f r  F}es dF 

(9) 

(lO) 

where 

(aF_ ~F ~F_ ~ F )  
~F~pB Y: 

"2 "~P-~ eq~ ~q~ ~p~ 

is the Poisson bracket. 
This is already a renormalized form. For, suppose F is expressed in terms 

of a complete set of functions in phase space F = ~ an(a) q~(Pl "'" qn), where 
the an are coefficients to be determined so as to satisfy the Liouville equation. 
Then J becomes a quadratic form in the am : 

J = ~ a~an,(Cr(O,~_~r -k ( { ~ - ,  ~n'}PB)) - -  E a,~((~b~_Fo) -k (q~F0-)) 

~'~" (11) 

The stationarity condition leads to a set of linear inhomogeneous equations 
for the an.  All coefficients are equilibrium correlation functions. The 
approach in I was based on a particular ordering of the ~b in terms of one- 
body additive and two-body additive functions, etc. 

There are other renormalized forms that are useful. I f  we reverse the 
momenta in this second term of the Poisson bracket and note the invariance 
of ~ under this transformation, we find 

aTE= 2KTf ~ 1  OF ~F_ 
= ~P~ ~q~ 

Integrating by parts, we find 

- -  - -  d / "  ( 1 2 )  

f ( ~  ~F JL~, --2KT F - E  Op~ ~q~ 
o~ 

+ ~ a~F ~ dP 
~p~ ~qJ 

Introducing the one-body additive operator 

D:--ED~=Z P~--KT 
~=i ~=I m ~q~ 

(14) 
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we have 

J = (F_ ,  (a q- 2D)F) - -  (F_Fo) - -  (FFo_} (15) 

We now introduce variational principles involving complex functions. 
We want to have the freedom to choose trial functions for FN(t) that are 
complex. For example, in the computation of the density autocorrelation 

N 
function we start with the initial condition Fo = Y.~=x exp(tkq~) and compute 
(Fo*FN(t)). 

The equation to be satisfied is (~FN/~t) -}- LFN = O. Because the equation 
is linear and L is real, we also have (~FN*/~t) -~- LFN* = 0. The Laplace 
transforms of the two equations are 

(a + L) f f (a )  = Fo,  (c~ -k L )F* (a )  = Fo* 

where F--~(cr) ---- r~ o-ot,.:*rt~ dt. If  we have the solution to the first equation, dO w ~ k J  

namely F(a), we can find the solution to the second equation by taking the 
complex conjugate ofF(o), treating a as real. Furthermore, with an approxi- 
mate F(~) we can always restrict ourselves to trials for F*(~) which are 
constructed from F(a) in the same way. On the other hand, even for real 
~, F(~) is complex, i.e., contains two independent real functions. Thus we can 
take an alternative point of view and treat F(a) and F*(~) as two independent 
functions in the variation. 

We now understand the * operation to represent complex conjugation 
with ~ left unaltered even when it is complex. (For notational convenience we 
drop the bars that indicate Laplace transforms.) Let us form the functional 

f q}F_*{(a q- L) F -- F0} d r  - -  ( q~F_Fo* d r .  (16) Jo 
d d 

Varying F and F* independently, we have 

~Jo = f �9 ~F_*{(~ + L) r -- ro} d/" 

f L)F_* d r -  f �9  F_Fo* dr 

where we have integrated by parts in the second term. The condition of 
stationarity yields the desired equations, 

(a -k L ) F  = r0 ,  (~ + L)F* = F0* 

and the stationary value of Jc is 

= --  ( CPF_Fo* d F  [Jo] 
d 

(17) 
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Thus J~ is a suitable complex functional. A symmetric complex function is 

J~, = �89 q- L ) F  + F_(a + L ) F * )  -- <F_F0* + F_*Fo) (18) 

with [JCs] = --�89 -q- F_*Fo). 
The complex functionals may also be transformed to renormalized form. 

We have 

(F_*LF) = - - K T  f ~b{F_*, F}p B dF = (F_*DF) + (F_DF*) 

J, = a(F_*F) + (F_*DF) -+- (F_DF*) -- (F_*Fo ~- s (19) 

In the next section we give some examples of the use of the variational 
principles. 

Under certain circumstances it may be useful to remove an overall 
normalization factor. This is the Schwinger variant of the stationary varia- 
tional principle3 2~ We set F = A(a) G, where A is a parameter. Varying A 
and A* in J~, we find 

A = (a_*Fo)/(cr(a_*a) -Jr- <G_*LG)) (20) 

and 

Hence 

[J~] = --(G_Fo*)(G_*Fo)/(~r(G_*G) q- (G_*LG)) (21) 

J~ = --(F_Fo*)(F_*Fo)/(a(F_*F) + (F_*LF)) (22) 

is a new form of the variational principle. 
The Schwinger form is sometimes surprisingly powerful. For example, the 

crudest choice of  a trial function is F = [1/(cr § L0)] F0, where 

F = ~ exp(ikq~) 
c~=l 

This is a free-particle estimate of the evolution of  the distribution function. 
Nonetheless, the value of J~ is exactly that given by the Zwanzig modification 
of the Vlasov equationJ m With the usual variation principle one is required 
to vary the functional form of a one-body additive trial function. 

3. U S E  O F  T H E  R E N O R M A L I Z E D  F O R M  

In the present section we rederive the results of L The variational form 
of the theory is more flexible, however. It  allows us to make both extensions 
and also restrictions at any stage of the basic theory. 
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We start with the real form of the functional and assume the one-body 
additive form 

N 

FN = Z r = ~(~) ~b(Y) (23) 
a = 1  

The only part of the functional that requires special consideration is JL �9 We 
use the form 

OF_ OF dF 
JL = 2KT f ~ ~ Op--7 Oq----~ 

or o4, = 2KT f r ~ ~ (_p~, q~) ~ (p~, q~,) dF (24) 

Introducing one delta function, this is 

JL ~ 2KT ~ f ~ ~ ( p ~ ) ~  (p~x)8(q~- x)dax dF 
cr 

(25) 
0,r or = --2Kr ~ f �9 ~ (pax) ~ (_p~x) a(q~ -- x) d3x dr  

Introducing another delta function, we have 

" o4, o4, & = --2KZr y, a(p~ -- p) ~ (px)--ff (_px) 4% -- x) g"x dV 
or 

(26) 
= --2KT f f *(px)~--~ (px) ~ (px) d> d=x dV 

Hence the total functional is 

J = a (~( i )  ~(2)> ~b(T) ~b(2-) -- 2(N(1) N(~)) ~b(T) ~b0(2 ) 
(27) 

--2KT(N(i)) Off(T) 0r 
Opl 0xl 

The variation with respect to r yields 

KTO(NO)> 0ff(1) = (NO)N(2)> r (28) g(N(1) NO)> ~b(2) -- Opl Ox, 

This is the modified Vlasov equation discussed in I and obtained earlier by 
Nelkin, Zwanzig, and others/8) 

The only new point is that the stationary value of J, using the correct 
solution of the above equation, is 

[J] = --(N(1) N(2)) ~b(l_-) ~0(ff.) (29) 
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The complex form of the functional is 

Jo = ~<N(i) N(2)} r r -- <N(i) N(2)}{r r + $(i) r 

KT<N(i)>lt ~r ~%(i) + 0r ~r (30) ~ p ~  ~x~ ~pl ~xl 

Variation with respect to ~*(1) again yields Eq. (28). The stationary value is 
[Jr] =- - (N(1)N(2)>  r r The complex form is particularly con- 
venient. For example, in the study of the density autocorrelation function 
r = exp(ikx) and we may assume r  ~(pl/k)exp(ikx 0. The 
transition to the Fourier transform then can be made at the level of J , .  We 
then obtain the functional J~ of Eq. (35). 

We now illustrate how the variational approach can be used to conserve 
the gains of a given approximation when one proceeds to improve the approx- 
imation. Let 

N 

F = ~ ~(p~/k) exp(ikq~) + G(p~ --- PN, qz" qN/k) (31) 

We have added a function G, which is to represent a limited extension of the 
one-body theory. Let us choose G to be orthogonal to the one-body part in 
function space in the sense 

N 

f ~ Y r a dr" = 0 
a = l  

(32) 
f ~c_* E ~(p~/t) exp(ikq~) d r  = 0 

We will take account of these constraints by means of two Lagrange multi- 
pliers k and A*. The new functional has the form 

Jn + J~2 + f r 6(P) R(p/k) d3p + f ~b(p/k) CR*(p/k) dap (33) J 

r R(p/k) --= f ~ ~, g(p~ -- p)[exp(ikq~)]{(~ -- ~) + L} G dr '  (34) 

Jz2 is the part of the functional involving G alone, i.e., is Eq. (15) with F 
replaced by G. Jzl is simply 

dn ---- N f r ~h*(p~/k){o- + (ikp/m)} ,&(p/k) d3p + (~P2(k) A*A(k) 

-- N f 4r162 + (PJN) Ao} -- N f 6{r + (PJN) Go*} 

(35) 
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where 

A = f ~(p)~(p/k) dap. 

We can now vary ~b*(p/k) and G_* independently�9 In the variation of ~b* the 
mixed term adds an additional term to the inhomogeneous part of the modi- 
fied Vlasov equation. We then find the optimum ~b for given G as 

~b(p) : f T(p/p 1) R(p ~) d3p ~ -t- f T(p/pl){~~ ~) § (P2/N) Ao} d3p 1 (36) 

with 
3(p -- pX) P2(k) 1 

T(p/Px) -- a q- (ikp/m) o N a + (ikp/m) 

4~(pl) 1 x 
~r -J- (ikpl/m) 1 -~- (aP2/N) I(ka) (37) 

d? d3p ( I(ka) J ~r + (ikp/m) 

As a result, ~b can be eliminated from the functional. We find a new 
functional involving G alone. There is an effective interaction as a result of 
this elimination. 3 To simplify things, we consider the study of the density 
autocorrelation function where ~b 0 = A0 -=- 1. We then find 

J ---- - - N  (1 + a(p2i/N) -[- J22 + f R*(p) T(p/p 1) R(p ~) d3p dZp 1 

(38) 
1 R*(p) r dZp 

There are also the modified constraint conditions to determine A and A* that 
are the result of inserting the solution for ~ in Eqs. (32). The first term in d is 
a constant and is the result of  the one-body theory, i.e., G ~ 0. Now, how- 
ever, a limited choice for G, for example, a linear combination of a finite 
number of many-body modes, allows us to immediately improve the estimate 
of the density autocorrelation function. 

Finally, we exhibit the variational analog of the two-body additive 
approximation using the complex function. We assume 

FN = 3~(T) ~(T) + �89 ~b(TE) (39) 

together with the orthogonality condition 

<~(D ~r(~) ~*(i) ~(~3) : 0 (40) 

3 The same elimination of one-body additive functions has been carried out by Akcasu 
and Duderstadt c~) in the framework of a different formalism. 
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Using Lagrange multipliers 
condition, we have 

J = 

J22 

&~ + &l = 

711 

to handle this and the complex conjugate 

Jll + J12 + J21 + J22 (41) 

�89 N(37~)) r162 -- r + c.c. 

+ ~-r + D(2)] r 

+ (N(i23))[D(i) r + 9(2) r (42) 

kr r + D(2) r 
+ <N(~23)> 9(3) r 
+ �89162 N(3)}[(~r -- A) r -- r + c.c. (43) 

r N(2)}[ar -- r + (N(i)> 
( p d m ) [ e r  - r N(Y.)) r (44) 

Using integration by parts on the complex conjugate terms, we find 

J22 = 1<N(12)N(34-)> r162 -- r 

+ ar + L(21)] r 

+ <N(123)> M(i2/3)[r + r (45) 

Jz~ + J~ = r N(3)>[(~ -- a) r -- r + c.c. 
+ r + L(21)}{r + r + c.c. (46) 

In this form the variation with respect to r is easy to carry out. The 
desired equation for r is just the expression multiplying r The 
above functional yields Eq. (40) of I, apart from the constraint term and the 
different normalization OfFN.  

4. PARITY  C O N S I D E R A T I O N S  A N D  T H E  L I O U V I L L E  
O P E R A T O R  

In the preceding sections we have stressed theories based on the tenor- 
realized form of the functional. It may, however, be advantageous to use trial 
functions which explicitly contain the bare potential. In particular, the trials 
may contain powers of  the Liouville operator. This is of course suggested by 
the formal exact solution F = (~ + L)-ZFo . With trials that contain L 
explicitly (h) the variational parameters involve equilibrium averages of  
functions of  the potential energy. These are well defined for both short- 
range forces and for Coulomb forces. 
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J = 

where 

As a simple example, we take a trial function of the form 

M 

F = Z Am L~F (47) 
qn=0  

for some finite M. The formal short-time expansion of the exact solution is 

F = (1/~){1 -- (L/o) q- (L2/a 2) q- . . . .  } F  o 

We expect the coefficients A,~, as determined from the variational principle, 
to have the correct behavior as a ~ 0. Thus the theory, whatever else its 
inadequacies, should have correct short-time behavior to any desired approxi- 
mation. We use the real variational principle, and for simplicity take F0_ = F0. 
Then 

M M 

Z A.A~{aKn+~ + Kn+m+l} - -  2 ~ A.K,~ (48) 
qZ g ~7~ ~ = 0  

( .  

K~ = j #FoL~Fo d_P (49) 

We have used the fact that 

( L mFoLnFo) = (FoL~+',Fo) 

The variation yields the linear equations 

M 

~, An(aK~+,~ q- K~+m+~ = Kn , n = O, 1 ..... M (50) 
m = 0  

In particular, for M = 1 we find 

Az = --Ao/a, A o : a[a z -- (K~/Ko)] -1, [d] = --AoKo (51) 

[J] has poles at a = • K2/Ko ])z/z. Since Ko > 0 and/s < 0, the distribu- 
tion function is the sum of two oscillating terms. As a special example, 
consider the velocity relaxation problem. Let 

N 

Fo = ~ fo(P~) with f fo(P) $(P) d3p = 0 (52) 
~x=l 

Then 

Ko : N ffo(P)fo(P) ~(P) d3p 

G = 3 \~% -~, (p)-~- (p) a~p 

(53) 



Approximate Solutions of the Liouville Equation. II 287 

For  the case M = 3 there are two pairs of  imaginary roots. We are not 
interested in the case where there are an odd number  of  roots, although the 
variational method permits one to do so. In such cases there is always an 
isolated ~ = 0 root. For  example, for M = 2 the roots are a = 0, 
a 2 = K 4 / K ~ .  The reason for preferring an even number  of  parameters is 
linked to a deeper consideration which we now discuss. 

The Liouville operator is antisymmetric under the operation of  momen-  
tum reversal p~-+ --p~.  I t  is also antisymmetric under coordinate reversal 
q~-->--q~,  and is symmetric under the combined operations. I f  F 0 is a 
symmetric function under the " p "  parity operation, the odd powers L~Fo are 
antisymmetric, In fact, one can always write 

F = F S dr_ t7,.4 F _  A = - - F  A, F _  S = F S (54 )  

crF s 4- L F  A = Fo s,  r  A q- L F  s = Fo x (55) 

We can now eliminate F A by writing F A = (FoA/a)  - -  ( L F S / a ) ,  and find 

(a  S - -  L 2) f s = aFo s - -  L F o  A (56) 

These considerations also hold for approximate trial functions. In the 
variational functional the symmetric and antisymmetric functions may be 
varied independently. For  any approximate F s the optimal choice of  F a is 
the one written above. We can therefore eliminate it f rom the functional and 
find (for Fo x = 0) 

J = ( F * [ ~  - (L=/~)] F* )  - <FS% + F~Fo*> (57) 

Of course, we can also eliminate F s and find a functional for F A. The nor- 
malization-independent principle is 

J = _ c r<FSFo*) (F  s * F o ) / ( F  s*(a  2 _ L 2) F s )  (58) 

The operator L 2 is invariant under the separate parity operations. Let us 
investigate the Liouville series approach for the case M = 4. We need only 
two terms in F s ,  

F s = (Ao + &L~)Fo (59) 

J .  = ~ A ~ * A . [ c r K . + ~  - -  (1/~) Kn+m+d --  ~ ( A n * K n  q-  A n K . )  (60) 

The roots of  the associated determinantal equation are given by 

(Kocr2 - -  K 2 ) ( K 4 a  2 - -  K 6 )  - -  (K2c~ 2 - -  K 4 )  2 = 0 (61) 
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The integrals K4 and Ke are straightforward but tedious to evaluate. For the 
density autocorrelation function we have 

Ko = (p(k) p ( - -k ) )  = N -k e2(k), 1(2 = k2(KT/m) (62) 

It is possible to improve the theory so that one obtains correct behavior 
for all times in the noninteracting particle limit. We take a trial function 

F s = (or 2 -- to2) -I aFo, Lo = Z (pJm) ~/0q~ (63) 

For the density autocorrelation function 

F s = ~ [exp(ikq~)]{a 2 q- [(k" p~)2/m2]}-~ (64) 

Skipping the detailed calculations, we find, using the norm-independent 
functional 

[J] = - - a ( N  q- P2) ~ T~ , __  (65) 

A =- N T  o -q- P2a2To 2 q- ~KT  (kZ/m 2) ( ~ V .2V)  Z 
k "7 / 

Here 

P2(k) = ( ~ exp[ik(q~- q~)]) (66) 

= f d? d3p{a ~ -k [(k" p)2/m~]}-i (67) To 

[(k. p)~/m 2] r dSp{a ~ -k [(k" p)2/mZ]}-' (68) Z 

The term containing (~Y=I V~ 2V) corrects the modified Vlasov equation. 
There are obvious extensions of this type of theory, which has the advantage 
that the autocorrelation function is directly given in terms of quadratures. 
However, instead of pursuing this line of thought, we turn to simple exten- 
sions which involve functional variations. 

5. V E L O C I T Y  R E L A X A T I O N  PROBLEM 

We now study the problem of the evolution of a spatially homogeneous 
initial perturbation of the form 

N 

Fo = ~ r 
Ix= l  

First we take the initial distribution to be even under momentum reversal. 
N 

The crudest assumption is E ---- ~2~=z ~b(p~/~). This however, gives nothing 
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since JL = KT({F_*, F } ) =  0. Hence the initial distribution persists in- 
definitely. 

The one-body assumption F s = ~N= 1 ~(Pal 17), 9~(_pa) = ~(pe), made 
only on the symmetric part yields nontrivial results. For, then, 

Fa = LFSa -- al ~ aq~ ~P~ (p~ [ a) (69) 

The antisymmetric part describes effects of forces between the particles. In 
the functional (57) we need 

~b* 
(LF*SLF s) NVo f = (p) (p) d.p 

where 

1 ~V ~V V ~ 7 \  

The complete functional is 

N ~b* 0~b 
J = Na f ~ * ( p )  ~h(p) dap + N(N -- 1) aA*A § Vo f ~- Op Op d~P 

N f ~b*(p) ~bo(p) dap -- N f ~o*(P)  ~b(p) dap 

-- N ( N -  1)(A*A o + Ao*A ) (71) 

where A = f ~b(p) dap. 
The variation with respect to ~b*(p) yields 

a~(p) ~b(p) Vo ~ (~ O~b ) + (N -- 1) aq~A = ~b o + q~(W -- l) A o (72) ~p - ~  

Integrating over momenta, we find A = A o . It suffices to take A o = 0. 
The stationary value of the functional is 

[J] = --(Fo*F s) 

and is the Laplace transform of the evolved distribution. If  we satisfy the 
equation for ~b(p), we have 

[J] = - - N  f ~(p) ~'o*(P) ~b(p) d3p (73) 

The short-time behavior is given by solving Eq. (72) in inverse powers of ~r, 

~b(p) = ~b--~~ (p) ~ q~ + ..- (74) 
a q~ ~p 
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Thus 
NVo ( ~bo* ~b ~ (p) + ... 

[j]_+ Na f r ~b~176 + as 3 ~ ~p ~p (75) 

This agrees with the exact solution based on 

F - -  Fo LFo 1 
~r a2 + L2F + "'" 

We now turn to the exact solution of Eq. (72). Introducing g = (o:/2~b, 
we find 

1 ~2g + 1 p2 1 ~ - -  3 ~1/2 
2 ~p~ 2 (2mKT) 2 g -}- 2 (" Vo2mKT ) g = Vo ~b~ (76) 

This is the Schrbdinger equation for the three-dimensional harmonic 
oscillator with an inhomogeneous part. We reduce it to unit frequency by 
introducing p = r(2mKT) ~/2, 

1 ~2g + 1 2 Co 1/~2mKT (77) 
- - ~  ~r--- Y ~r g + Eg -- 2Vo 

where E = �89 -- 3] and ~ = (2~rmKT) -3/2 exp(--�89 
Let us consider initial distributions ~b0(r ) that are spherically symmetric. 

It then suffices to expand g in Laguerre functions. Let 

~bk = (exp --�89 2) L~/2(r ~) Ce, k = 0, 1, 2, . .  (78) 

The normalization fo ~bk 24~r2dr = 1 yields 

1 [ F ( k +  1) x/2 
Ck - -  (27r)z/2 I + 3) F"(k ) (79) 

oo  

The expansion g = ~]~=o Ak~bk then yields 

fo A,{a~(mKT/Vo) + 2n} = (mKT/Vo) ~ ~bn~l/2~o4~rr2 dr (80) 

This solves the problem. The value of the functional is 

[J] = - -N f ~bo*(p) ~b(p) d~p 

= --N(2mKT) 8/~ E A,~ f d?l/z~bo*(r) ~b,4~rr z dr 
n = O  

60 

[ mKT ] a ~ a2(mKT~o ) + 2 n  [J] = --N(2mKT)3/2 I'----~o! ,=0 

(81) 
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where 

B = f 4~/~bo*(r) ~b,Awr 2 d r .  

The expression for [J] has poles when as = :J:i(2Vo/mKT)l/2n 1/~, 
n = 0, 1, 2,.... If the initial distribution is an eigenfunction of  the oscillator 
the behavior is oscillatory. However, the frequencies of  different eigen- 
functions are incommensurable. Thus for a general initial distribution there 
is a phase mixing of the different components. The singlet distribution is 
given as 

The nonradial parity-even initial distributions may be analyzed in the 
same way. The case where the initial distribution is antisymmetric under 
reversal of  momenta may be handled by eliminating F s by writing F s = 
- - l / a )  LF A and assuming F A : Z ~(p~/cr), ~b(_p~/a) = --~(p~/e). One finds 
that the quantity r = fp$(p)~b(p/e)d3p is constant in time. This is a 
consequence of momentum conservation. I f  r = 0, the equation for 
g(p) = ~b~l/2 is the same as Eq. (77). The singlet distribution is again 
R(p/~) = N~(p) ~(p/~). 

6. DENSITY  A U T O C O R R E L A T I O N  F U N C T I O N  

In this section we continue the strategy of  allowing successively wider 
classes of functions as trial functions in the variational principle. We obtain 
an improvement of the modified Vlasov theory for the density autocorrelation 
function. 

Let us assume one-body additivity for only the symmetric part. The 
trial function is 

N 

F s = ~, ~(p~/k) exp ikq~, 

f a = - - ( l /a )  LF s 

r = r = r 

(82) 

The complex functional is 

k ~ 
J = N f $~b* [a + - ~  P@] ~ d3p + P2[aA*A -- A*A  o -- Ao*A ] 

+ N Vo f c~ ~b* ~b dZ p _ N f (~b*~b o + (Jo*~b) r dZp a ~p ~p (83) 

822/9/4-2 
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where A(k) = f ~(p/k) 4 d3P �9 Functional variation with respect to ~b*(p/k) 
yields 

k~pz 2 ~ ~ ~b P2 2 A P2 
( o . ' +  ~ 1  4~b(P/k) -- Vo ~ ( 4 - ' ~ p )  -t- 4 - ~  o. zl = o-4 [~bo + "~Ao] 

(84) 
Put ~b = g/d//2. Then 

~2g V~ k2Pa21 + 
(2mKT) 2 3 m  2 l 

P~ Ao ) = o-#/2 (~o + 

3v0 ] P~ 
2~---KT] g -~- 41/3 "N o-2A 

(85) 

This checks with our result on velocity relaxation when k ~ 0, with Vo 
finite. The limit V0--~ 0 is somewhat singular, since the coefficient of the 
second derivative vanishes. If  Vo = 0, we find 

k2p2 , 41/2 p2 p2 (or 2 + ~ 1  g(p) + -~ o.~A o-2 (~,b o = + -~ Ao) 41/3 (86) 

The initial condition for the density correlation function is ~b 0 = 1. We then 
find 

P2 To ) A ( V  o = 0)-----o. (1 + ~-)T0/ (1  + o . e  

(87) 
4 ( 

To d3p 
j o-2 + (k~p32/m~) 

The stationary value of the functional is 

[J] = --{N + P2(k)} A(k) (88) 

The expression for A has a branch cut on the imaginary axis in the o. plane. 
This is the modified Vlasov theory. 

Before studying the exact solution of Eq. (85) let us examine some 
general features that can be obtained directly. We study the short-time 
behavior of the density autocorrelation function. Let us look for an asymp- 
totic solution of the differential equation by expanding in inverse powers of 
o.. Write 

= (1/o-) -j- (1/o -8) A(p/k) + (1/o -5) B(p/k) + ... 

A = (1/o.) + (1/o "3) f A(p/k) 4 d3P + (1/o.5) f B(p/k) 4 d3p + "'" 

(89) 
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This yields the results 

f Ad? d3p = --(k2KT/m) [1 + (P2/N)] 

A = --(k2p2/3m z) -- (P2/N) f Ad? d3p (90) 

f Bd? d~p = -- f [(k" p)2/m21 Ad? d3p[1 + (PJN)] -1 

The term (1/a 5) f Bd? d3p disagrees with the exact asymptotic solution of the 
Liouville equation. In this approximation Vo does not enter into the asymp- 
totic expansion. 

It is easy to find a formal series in powers of V 0 for the quantity A(k). 
A closely related series is somewhat more compact. Let 

[a 2 3 V o + ( k~p32 + V o p 2  ~]--1 
w(1,) (91) 

2mKr  \ ~ -  (2mKT) 2 m 

We rewrite Eq. (85) as 

g(p) = VoW(P)(~2g/~p 2) + [1 + (p2/N)(1 -- aA)] ad?i/ZW(p) (92) 

The iteration solution for g(p) is 

g(p) = [1 + (?2/N)(1 -- aA)] a ~ Vo'~(W ~2/~p2) n d?z/2W(p) (93) 
n = 0  

We then find A(k) in the same form as Eq. (87), 

A ---- [1 + (P~/N)] aY[1 + a~(P~/N) y]-I (94) 

Here 

Y = ~. Vo'~Yn, Yn = f d?l/2(W~Z/OP~) ~ d?l/~Wdap (95) 
n=O 

The terms with n >/ 1 represent corrections to the modified Vlasov formula. 
They give branch cuts in the a plane. 

Let us now turn to the exact solution of Eq. (85). To reduce the problem 
to unit frequency, introduce 

1 k s 
co z = (2mKT)~ + 3m2-------~o, COo = (2mKT) -1 

1(_,~ ~ 1 ) 
~ = 2 Vo 2mKT- ' g = (d?:d?~)l/~ ga(Pa) (96) 

r = oY2ps, d?3 : w~/2~r -1/~ exp(--wopa 2) 
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Then Eq. (85) becomes 

With 

1 8~ga 
2 ~r 2 

E 1 2 d?~/2 Pz(k) a~l/u (1-t---~) -~qa 
+ ~ r g - + -  2o~ N V  o a ~ A :  2V  (97) 

where the ~b.(r) are normalized one-dimensional oscillator eigenfunctions, we 
find 

1 ~2A P2 ~ ( I + ~ - ) B .  (99) 

where Bn = J" Cz/~b~ dr. The Bn are explicitly 

B2~ = w~/~2-~[(2m)!]1/~(o~-1/~/m !)[(1/~) -- 1]" (100) 

c~ ~ �89 -5 (1/4mKT)(1/w) 

A ~- f 4r dp = ~ A.B.co-z/2 (101) 
n = O  

Noting that 

we find the solution for A in the form 

A[1 + (a2PffN) YI = ,,[1 + (PffN)] Y (102) 

Here 

1 ~ B. z 
Y = 2VoO~/-----~ ,-. (~1~o) + �89 + n (103) 

For  finite V0 the poles of A lie at the zeros (r 2 = --Sn ~ of the expression 
1 -- ~(P~/N) Y = O. Y has poles when (C/w) + �89 + n ~ 0, or when 

S .  ~ : (1 -t- 2n) Vo [- 1 k 2 ]1/2 Vo (104) 
(2mKT)~ + m--~Vo ] 2 m K T  

For every n there is a pair of real roots S,~ z giving the positions of the poles. 
They correspond to a pair of conjugate poles on the imaginary a axis. Between 
two poles corresponding to n and n -t- 1, Y(~) and y- l (e)  take on all values 
between --ao and + oo. There is therefore one zero of 1 --  a2(PffN) Y'(a) 
between n and n + 1. In the limit V0 --~ 0 the infinite series of  poles of  A(k) 
becomes a branch line and yields the one-body additive limit. 
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7. S U M M A R Y  

In this paper the problem of finding solutions of the Liouville equation 
in the linear response domain has been attacked from the variational point 
of view. We have worked with the Laplace transform of the distribution 
function and set up variational functionals whose stationary value is the 
quantity we wish to estimate. With the normalization-independent form (22) 
or (58) the singularities of the functional are the zeros of the denominators. 
Thus one can develop a perturbation theory which corresponds to a per- 
turbation theory for the mass operator in standard Green's function formula- 
tions. Since the averages are taken with the exact Gibbs equilibrium distribu- 
tion, no unlinked diagram problems arise. 

We have exhibited forms for the functional that are renormalized in the 
sense of paper I. This makes it possible to study a wide class of theories 
where functional forms in the postulated Liouville distribution are varied. 
Some of these will be studied in future papers. We have also exhibited forms 
where the parity symmetric and antisymmetric parts of  the distribution are 
independently varied and one or the other is eliminated exactly. In Sections 
5 and 6 we have shown how this can be used to improve theories that involve 
the simplest trial functions. In the next paper in this series we show that it is 
possible to find functionals where all the differential conservation laws are 
automatically satisfied for any trial function. It  is important to have these 
more powerful formulations of the basic problem. Calculations with realistic 
trial functions inevitably involve three- and four-body equilibrium spatial 
correlation functions. The labor that must be expended can be justified only 
if the underlying theory is manifestly sound. 
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